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bstract

The main goal of this work is to realize a PEMFC model that can be used efficiently for the global modelling of the fuel cell system. The
odelling method proposed in the paper is an approach from an empirical point of view that allows a PEMFC model of “black-box” class to be

eveloped. Moving least squares (MLS) have therefore been employed to approximate the cell voltage characteristics V, using an experimental
ataset measured in determinate conditions. The MLS approach appears to present a good balance of response surface accuracy, smoothness,

obustness, and ease of use. This kind of numerical model offers good perspectives for the systems identification, the simulation of the systems,
he design and the optimization of process control, etc. The results prove that the method is suitable for predicting and describing the fuel cell
ehaviour in all the points of the approximation domain. The proposed model can be included in a numerical application to optimize the operation
f an existing fuel cell system.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Fuel cells power generating systems represent a solution to
eplace traditional distributed power sources because of their
igh efficiency, clean operation and multiple applications (trans-
ort, residential, portable) [1,2]. Fuel cell based power plants are
urrently under rapid development and first plants are expected
y the next few years with size ranging from 20 to 250 kW, up to
MW [2]. In particular, proton exchange membrane fuel cells

PEMFC) are most suitable for automotive applications because
f their low operation temperature, providing a fast start-up, and
igh power density. The design and analysis of a complete fuel
ell system demand the correct modelling of the fuel cell stack
nd of the other sub-systems around.

Over the last 17 years, many PEMFC models, either theo-
etical or empirical, from simple zero-dimensional to complex
hree-dimensional models, have been developed (analytical

odels, mechanistic models, semi-empirical and empirical

odels). There are several papers which review some of the work

bout PEMFC modelling, for example [3,4]. Semi-empirical
pproaches combine theoretically derived differential and alge-
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raic equations with empirically determined relationships [5–9].
he empirical approaches develop algebraic models based on
xperimental datasets. They describe the performance of a true
ystem working in given conditions. Such models can be based
n analytical expressions [10] or they can be described by pure
umerical approaches.

The main goal of this work is to realize a PEMFC model
hat can be used efficiently for the global modelling of the fuel
ell system. The modelling method proposed in the paper is an
pproach from an empirical point of view that allows PEMFC
odel of “black-box” class to be developed. The MLS approx-

mation method is the core of the proposed method. The MLS
ethod is widely used in meshless methods but it has been suc-

essfully applied for response surface generation in the context
f optimization [11]. The MLS algorithm uses an experimental
ataset, cell voltage versus current density, measured in determi-
ate experimental conditions (pure hydrogen fuel, air as oxidant,
ell temperature, pressure, membrane humidity, reactants stoi-
hiometry), in order to create the PEMFC numeric model. Such
umerical models are extensively employed in various areas of
he science and of the technology offering good perspectives

n the systems identification, the simulation of the systems, the
esign and the optimization of process control, etc. The proposed
odel can be included in a numerical application to optimize the

peration of an existing fuel cell system.

mailto:stefan.giurgea@utbm.fr
dx.doi.org/10.1016/j.jpowsour.2007.09.097
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Fig. 1. Applic

. Analysis and modelling

Based on the MLS method a numerical approximation
ethod for PEMFC modelling has been developed as is shown

n Fig. 1.
The central element of this application is the “Approx-

mation” module. This module creates an entity defining
lgebraically the surrogate model based on the MLS approxi-
ation. There are two main operations defined on this surrogate
odel entity: calibration and approximation. A pre-sampled

ataset is needed to calibrate the model. Once calibrated, the
lgebraic surrogate model provides the “approximation” func-
ion that outputs the approximate value and the gradient for every
oint of the feasibility domain.

.1. The proposed fuel cell modelling approach

The proposed model belongs to the family of the surrogate
odels. Most engineering design problems require experiments

nd simulations to evaluate design objective and constraint func-
ions as function of design variables. One way of alleviating
his burden is by constructing approximation models (known
s surrogate models, response surface models, metamodels or
mulators) that mimic the behaviour of the simulation model as
losely as possible. Surrogate models are constructed using a
ata-driven, bottom–up approach. This approach is also known
behavioural modelling” or “black-box modelling”. The most
opular surrogate models are polynomial response surfaces,
riging, support vector machines and artificial neural networks
12].

Most of the response surface construction methods use global
east squares (GLS) methods. The GLS methods use a single
uadratic or cubic polynomial representing the entire para-
etric space of the random variables. However, the MLS,

riging and radial basis functions (RBF) methods produce
igher accuracy in response prediction compared to the GLS
ethods.
Numerically the MLS and kriging produces the least error.
etween kriging and MLS it is difficult to choose one over the
ther, but MLS consistently produces marginally smaller errors
han kriging [13]. Moreover, the MLS metamodelling seems to
e more flexible and easy to use than kriging method.

f

w

architecture.

The MLS metamodelling appears to present a good balance
f response surface accuracy, smoothness, robustness and ease
f use. Therefore, we have used MLS in this paper to generate
he response surfaces from our 3D data sets.

This paper proposes and develops a numerical method for
odelling the fuel cell. The performance of the fuel cells

epends on several factors. The most important factors are the
uel cell operating temperature, the pressure of the reactants,
he stoichiometry of the reactants, the nature of the membrane,
he humiditification of the membrane, diffusion layer, electro-
atalyst layer and the sort of the channels. The proposed method
tarts from the experimental dataset presented in [6]. This dataset
s given in stationary conditions for a PEMFC supplied with
ydrogen and air, and it gives measured cell voltage V = V(J, p,
) as a function of the current density J, the air pressure p and

he absolute fuel cell temperature T.
As described [6] the experimental dataset were acquired on

PEMFC in the experimental conditions presented in Table 1.

.2. The moving least squares approximation (MLS) based
odel

Among the large number of numerical methods about func-
ion approximation the moving least squares method provides
oth an accurate local function approximation and a contin-
ous gradient approximation [11,14–17]. However, also other
pproximation techniques could be employed like those based
n feed-forward neural networks [18,19].

A short overview of the MLS method is exposed below.
onsidering the sampled dataset {(yi, xi)}i=1,. . .,N, where:

y = {yi}i=1,. . .,N = {y(xi)}i=1,. . .,N is the vector of function val-
ues in the experimental points;
xi ∈ D is the vector of the coordinates of the i experimental
points, with D the experimental domain containing N samples.

According to MLS, the local character is ensured by a weight

unction w(x, xi) defined on a support region B(xi) around xi:

(x, xi) = w(x − xi)

{
≥ 0, ∀x ∈ B(xi)

= 0, if not
(1)
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Table 1
Experimental conditions [6]
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ith x the vector of the coordinates of a generic point. This
eight function defines a finite domain of influence B(xi) ⊂ D̃,

round any experimental point xi, where D̃ is the approximation
omain.

For every point x of the domain D̃ let ỹ(x) be the moving
east squares approximation given by:

˜ (x) =
m∑

j=1

pj(x)aj(x) (2)

here pj(x) is the jth basis (generally a monome), m (m < N) is the
umber of the bases, and aj(x) are the coefficients of each base.
he m basis terms form the following m-dimensional vector:

T(x) = {pj(x)}m
j=1, m < N (3)

The vector a(x) = [a1(x), . . ., am(x)]T of the coefficients is
btained by solving a regression problem using the weighted
east squares error J(a(x)) for the N sampling points, defined as
ollows:

(a(x)) =
N∑

i=1

w(x − xi)

⎡
⎣ m∑

j=0

pj(xi)aj(x) − yi

⎤
⎦

2

(4)

he minimization of the error J(x) with respect to the coefficients
j(x) gives:

(x) = A−1(x)B(x)y (5)
here the matrix A and B are defined by:

(x) =
N∑

i=1

w(x − xi)p(xi)pT(xi) (6)

S

T
a

(x) = [w(x − x1)p(x1), . . . , w(x − xn)p(xn)] (7)

o guarantee the non-singularity of A, for a point x, an ade-
uate support B(xi) for each sample point xi is needed so that
(x − xi) �= 0 for at least m experimental points [17].
The expression of the global approximation is

˜ (x) = PT(x)A−1(x)B(x)y (8)

.3. Adapting the experimental domain for the MLS
pproximation

The experimental domain D is a discrete one and is defined
y the three-dimensional points x(J, p, T) ∈ D. It includes exper-
mental points at two operating fuel cell temperature values
50 ◦C and 70 ◦C) and at three values of the air pressure (1,
and 5 atm) achieved in the experimental conditions mentioned

n Section 2.1. It is apparent that the experimental domain is
ncluded in the approximation domain D ⊂ D̃.

To adapt the experimental data with the MLS approximation,
support domain B(xi) is considered around each experimental
oint. Thus, an entity is introduced to associate each experimen-
al point xi with a scalar r value, by which the support domain
an be defined. This support can be constructed either by using
sphere

I = {x||x − xI | < r} (9)

r, a n-dimensional cube:
I = {x||xi − xI,i| < r, 1 ≤ i ≤ n}. (10)

o ensure the computational feasibility and the accuracy of the
pplication the following issues are requested:
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However, the true interest of the method is the prediction and
the description of the fuel cell behaviour in all of the points of the
approximation domain. To prove these facilities the procedure
of “cross-validation” [20] is used.
Fig. 2. Adapting experimental domain:

. each point of the approximation domain D̃ must be included
in m compact supports, built around the experimental points,
where m represents the number of bases;

. a correct sizing of the compact supports, because an outsized
support SI of the function w(x − xi) would corrupt the local
character of the approximation;

. the experimental points included in the compact supports
must be as uniformly distributed as possible according to
each coordinate.

Taking into account the previously mentioned criteria the ini-
ial experimental domain has been transformed, obtaining a new
omain (Fig. 2a and b), where the experimental points are more
niformly distributed. First of all, the parameters temperature
nd pressure have been normalized (Tmax = 343 K, pmax = 5 atm)
btaining the relative values Trel and prel. Since the relative
emperature Trel and the relative pressure prel are uniformly dis-
ributed, only the current density J has been first transformed
nd then normalized. The transformation is a linear one with
oving coefficients which depend on the parameters Trel and

rel. This transformation is given by the following relationship:

trans = 1

a1 · Trel + a2
· J

tanh(prel + b1 · Trel + b2)
(11)

trans,rel = Jtrans

max(Jtrans)
(12)

n Eq. (11) the values of the coefficients are:

a1 = 7.7175

a2 = −6.3675

b1 = −3.9445

b2 = 4.3645

The expression of the transformation function has been cho-
en to have almost a uniform transformed domain. To achieve
his goal the examination of the experimental domain D has been
ade at first. Then a hyperbolic function has been chosen as the

ase of the transformation function. The coefficients of the trans-

ormation function have been computed accordingly to obtain
transformed domain, which is almost a rectangular polyhe-

ron. Fig. 3 illustrates the steps, which have been followed at
his stage. F
itial domain; (b) transformed domain.

The approximation method has been applied in the new trans-
ormed domain and then the inverse operation has been made to
eturn to the initial domain.

. Results

After pre-processing the experimental data, the MLS method
an be applied to approximate the stationary characteristic of
he PEMFC.

To estimate the accuracy of the method, the average of the
lobal error for all the experimental points is given. The expres-
ion of this error is, in percentage:

¯g = 100

N

N∑
i=1

∣∣∣∣ Ṽ (xi) − V (xi)

V (xi)

∣∣∣∣ (13)

here xi = (Ji, pi, Ti) ∈ D, and N is the number of the experi-
ental points. The computed value is ε̄g = 1.62%. In Figs. 4–7

he symbols ‘×’ represent the experimental dataset (the cell
otential vs. current density with T, p as parameters) and the
olid line represents the MLS approximation of the experimental
ata. Figs. 4 and 5 show the approximated fuel cell charac-
eristics in the experimental conditions (Section 2.1). The two
gures illustrate that the developed model fits with accuracy the
xperimental dataset.
ig. 3. Explanatory for the choosing process of the transformation function.
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Fig. 4. Fuel cell voltage approximated characteristic, at T = 50 ◦C, for three
different pressures: 1, 3 and 5 atm (‘+’ experimental data).

Fig. 5. Fuel cell voltage approximated characteristic, at T = 70 ◦C, for three
different pressures: 1, 3 and 5 atm (‘+’ experimental data).

Fig. 6. Fuel cell voltage approximated characteristic with predicted data for 2
and 4 atm.
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ig. 7. Fuel cell voltage approximated characteristic with the 3 atm data points
xclusion.

The experimental dataset is split into DS distinct segments
20]. Then the approximation is made using data from DS − 1
f the segments and its performance is tested using the remaining
egments. Thus, another experiment is made by excluding exper-
mental points. Starting from this reduced experimental domain
he characteristic curve is reconstructed. This reconstruction
ncludes the curve corresponding to the excluded points.

Fig. 6 shows the approximated results for five operating air
ressures 1, 2, 3, 4, 5 atm at 70 ◦C fuel cell temperature. For
cross-validation” 40 new points (20 for 50 ◦C temperature and
he others 20 for 70 ◦C temperature), which have been obtained
rom the approximated results for 2 and 4 atm, have been added at
he initial dataset. Then the experimental real points for the 3 atm
ressure have been excluded. Fig. 7 shows the approximated
esults obtained by the exclusion of the experimental real points
or the 3 atm pressure and proves the accuracy of the prediction
f the fuel cell performance in the whole approximation domain.
Fig. 8 shows, as a comparison, the error waveforms in case
ll the experimental data set were taken into account and in case
ll the dataset, without the input points of the 3 atm curve, were
onsidered. The both curves have the same rate that proves the

ig. 8. The comparative analysis of the errors for the two cases: (A) all the
ataset; (B) the dataset without the input points for 3 atm pressure.
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ig. 9. Fuel cell voltage predicted characteristic and the cell power density
dotted line), at T = 70 ◦C and p = 3 atm.

oherence of the proposed method. Of course, the first is lower,
ut they both grow with the current density in the non-linear
egion. The dispersion of the experimental points and the great
alues of the gradient on the domain boundary proximity are
he reasons of this fact. The error can decrease if additional
xperimental points are introduced. Anyway, this part of the
omain is not interesting for the fuel cell operation. As is shown
n Fig. 9 the power density attains the maximum value before
his region and the fuel cell operate at acceptable efficiencies
efore this point.

. Conclusions

This paper proposes and develops a numerical method for
odelling fuel cells with the help of moving least squares. The

se of MLS is justified by the fact that it is a powerful method for
pproximating experimental data. The proposed model belongs
o the family of surrogate models.

In conclusion, it can be said that:

the proposed methodology is suitable for modelling PEMFC
starting from experimental data. It also can be easily used to
approximate the fuel cell behaviour for more input parameters
than the temperature and pressure (stoichiometry, membrane
humidity);
the initial experimental domain must be transformed to obtain
a new domain, where the distances between experimental

points are more uniformly along the coordinates, to ensure
both the convergence and the accuracy of the method;
the validation of the method has been made using the proce-
dure of “cross-validation”. It is based on the graphical results

[

[

[

Sources 175 (2008) 773–778

and relative errors estimation. The level of the relative errors
shows the goodness of this approach;
the method can be improved to obtain a better precision
in the neighbourhood of the domain boundary by adjust-
ing the compact supports associated to the experimental
points;
the PEMFC static characteristics can be predicted and used
for the development of the global model of the fuel cell
system.
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